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Overview

1. The problem

2. Our model

3. Example: 17-bus network
4. Future Work
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The Problem: Hyperuncertainty!
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Transmission Planning Features
- Generators respond: Multi-level

- Decisions can be postponed: Multi-stage

- Uncertainties and variability: Stochastic

- Loop-flows!

Important Questions

Optimal strategy under uncertainty?
- Do future uncertainties have implications for investments today?
- Are there ‘'no regrets’ investments?

Value of information?
Cost of ignoring uncertainty?
Value of flexibility?
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CERTS JHU-Cornell Project

- Build & test simple 2 & 3 stage models for
transmission planning

- Decomposition approaches for coordinating
investment & (Super) OPF operating models

- Impacts of wind penetration on transmission planning
and value of rapid response
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Scenario Analysis

Optimal transmission plans for each
scenario

What if we plan for High Wind but
High DG happens?

Scenario analysis is too optimistic!

A AN
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Two-stage stochastic programming & three

“Today”

¢ Transmission
Generation
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Two-stage stochastic programming

“Today” Advantages:

* Realistic: Here-&-now
decisions made before
future known

* Recourse: we can adapt to
each scenario with later
wait-&-see decisions

» Timing of investments

Transmission
Generation
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Assumptions

Alignment of generation and transmission objectives

- Ex.: Nodal pricing + Perfect Competition

Generation
- No unit commitment or ramping constrains/costs

Demand

- No demand response

Renewable targets met in most efficient way
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Example: 17-bus CAISO network

Warning: Results highly preliminary & illustrative

» Generator data from WECC '
225-bus system (price, Oren, et al.)

» 24 corridors

e 5 Import buses

Time Series:

e Demand (CAISO)

« Wind (NREL)

» Solar (NREL)

* Hydro (EIA)
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Scenarios

Uncertainty: Fuel Demand Siting & RPS
Prices AR AL Resources 2021/ 2031
Scenario [TWh]

Eco +30% 276 / 306 Hard in CA 33% / 40%

Sample of 100 hrs/yr + 2 Stages + 3 Scenarios
=> 200,000 variables + 300,000 constraints
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Optimal Stochastic Solution: kirst Stage
Warning: Results highly preliminary & ill§strative
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Stochastic vs Deterministic: First Stage
Warning: Results highly preliminary & illustrative

Stochastic 2021 Deterministic 2021
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Value of Perfect Information
Warning: Results highly preliminary & illustrative
How much could we save if we knew which scenario

would happen?
1. Solve stochastic model (ECSS)
2. Solve deterministic (perfect foresight) model for
each scenario
* Then calculate probability-weighted
average of (2) (ECPI)

EVPI = ECSS — ECPI = $17 billion (8%)

-- If both transmission planner and generators have perfect information
-- Upper Bound to value of imperfect forecasts
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Cost of Ignoring Uncertainty
Warning: Results highly preliminary & illustrative
What would be the costs of planning naively for one

scenario but other scenarios can happen?
1. Solve stochastic model (ECSS)
2. Solve deterministic model for each scenario
» Solve stochastic model imposing first-stage

transmission decisions from (2)

ECIU (transmission only) = $69 billion! (32.5%)

Some topologies are infeasible for other scenarios
=> curtailments at 500 $/MWh!
More realistic recourse would lower cost
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Value of Flexibility
Warning: Results highly preliminary & illustrative

How much would costs go up if we had to make all
decisions now?

1. Solve stochastic model (ECSS)

2. Solve stochastic model imposing same

transmission expansion plan for all scenarios

VF = $22.7 million (0.01%)
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Case Study: Conclusions

For transmission planning:
 Ignoring risk has quantifiable economic

consequences
e This tool could be useful for policy/planning

guestions
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Future Work

1. Benders Decomposition
A framework for testing integration of SuperOPF

2. WECC 225-bus system

LINIVERSITY
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1- Benders Decomposition:
Separate Investment & Operations Problems

Convex Non-Convex

Operating Costs

Susceptance Susceptance

Continuous formulation

fi=5(x)-(6-6;)
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1- Benders Decomposition
Alternatives:

Master Problem IP

Disjunctive formulation Sub-problem LP

Nested Benders +
-M-(1-2)<f-5-(6-6,)<M-(1-2) Lagrangian relaxation
(Cerisola and Ramos)

) ) L-shaped method
Incorporate lumpiness of investments (Laporte and

Louveaux)

“Big Ms” induce numerical difficulties :
Logic-based Benders

decomposition
(Hooker)
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